

Linking AP Courses and Earth Science Literacy

 with Departmental Sustainability Webinar January 26, 2010Two Committees and the National Literacy Initiative: A Promise of Geoscience Departmental Sustainability

Robert W. Ridky, Ph.D
National Education Coordinatior

CollegeBoard

Reform of A.P. Science Courses \& Science Standards for College Success
www.earthscienceliteracy.org/
"Students can study topics in depth and develop conceptual understanding only if curricula do not present excessive numbers of topics. Currently, AP and IB programs are inconsistent with this precept."
> "Curricula for advanced study should emphasize depth of understanding over exhaustive coverage of content."

ZJUSGS

"Instruction in advanced courses should engage students in ingujry by providing opportunities to experiment, analyze information critically, make conjectures and argue about their validitiy, and solve problems both individually and in groups."

Ap Science Redesign

Discipline-specific expertise is provided by Redesign Commissions whose membership includes secondary and postsecondary educators and practicing scientists:

- AP Biology Redesign Commission
- AP Chemistry Redesign Commission
- AP Environmental Science Redesign Commission
- AP Physics B Redesign Commission

7 environmental scientists, 5 geoscientists

AP Science Redesign
 Curriculum Model: Environmental Science

Integrated Learning		
Unifying Concepts	Big Ideas of the Essential Content	Scientific Inquiry and Reasoning
- Models - Systems - Continuity and Change - Scale - Structure/Function - Science Explains the Real World	- Energy conversions underlie all Earth processes. - The Earth is composed of interdependent and interacting systems. - Matter on Earth is finite and moves through various biogeochemical cycles. - Human actions impact the environment. - Human beings depend on ecosystem services.	- The initiation of knowledge creation is usually careful observations that evoke informed questions. - Experiments are designed to answer a particular question. The quality of the answer is determined by the thoughtfulness of the design of the experiment and the tenacity of the experimenter. - Science and technology operate in a social context. Science and technology can serve national interests. But nationalism can impede solutions to transnational problems. - The capacity to reason scientifically requires an understanding of cause and effect, the difference between argument and explanation, and the uncertainty that arises from the use of models and measurement. - Situations that require the interpretation of graphical, symbolic, and numerical information and the application of judgment in the evaluation of the quality of that information support skill in analysis. - Communication is an essential element of the creation of scientific knowledge. Both the individual and the community have a role in the critical evaluation of information or ideas. - Skill in the numerical and symbolic representation of information and relationships increases the power of expression and the clarity of thought.

So why should I care about all this ?

- critical national need
? critical discipline need
?
? expanded view of the professoriate
- better integration of education and research

The Central Premise: Education and research are always in the social service; both are inextricably bound at all levels.

ZUSGS

Constraints driven by:

- the student pool from which we draw and upon which we are ultimately dependent
- expectations and opportunities associated with national and global priorities
- demographic and workforce issues

Provide Student Opportunities: The $K-12$ "Consumer" Market

Table 299: Degrees conferred in biology, micro, and zoology 1970-01 to '2006-07 Biology

Microbiology
Zoology

70-71	26294	2665	536	1475	456	365	5721	1027	878
75-76	40163	3177	624	2927	585	364	6077	976	645
80-81	31323	2598	734	2414	482	370	3873	881	613
85-86	27618	2173	574	2257	392	362	2894	618	548
90-91	29285	1956	632	1788	343	443	2641	551	516
95-96	44818	2606	768	2200	364	606	3463	677	501
00-01	42310	2582	780	2779	334	553	3045	560	380
06-07	52527	2679	788	2347	369	667	2223	416	263

Source: NCES, Digest of Educational Statistics: 2008

Table 313: Degrees conferred in chemistry, geology, and physics 1970-01 to '2006-07 Chemistiry Geoscience Physics

year	B	M	D	B	M	D	B	M	
70-71	11061	2244	2093	3312	1074	408	5071	2188	1482
75-76	11015	1745	1578	4677	1384	445	3544	1700	997
80-81	12682	1862	1649	6332	1702	404	3441	1294	866
85-86	10110	1712	1878	5760	2036	395	4180	1501	1010
90-91	8311	1637	2196	2367	1336	600	4236	1725	1209
95-96	10395	2214	2228	4019	1288	555	3679	1678	1462
00-01	9466	1952	2056	3495	1220	472	3418	1365	11699
06-07	10994	2097	2514	3319	1437	640	4843	1777	1442

Source: NCES, Digest of Educational Statistics: 2008

Trionge: Total Fall Enrollments, $1970-2006$

1970	$8,580,887$
1975	$11,184,859$
1980	$12,096,895$
1985	$12,247,055$
1990	$13,818,637$
1995	$14,261,781$
2000	$15,312,289$
2006	$18,205,474$

Source: NCES, Digest of Educational Statistics: 2008

Source: IPEDS Completions Survey; Year 2007

	African- American	Native- American	Hispanic- American	All Bachelors
Psychology	9,729	612	8,506	90,498
Business \& Management	34,688	2,085	27,967	337,157
Education	8,205	1,000	9,900	126,531
Chemistry	852	90	748	11,250
Biological Sciences	5,857	531	5,453	79,348
Computer Science	4,588	249	2,970	42,596
Engineering	4,630	445	6,114	84,336
Mathematics \& Statistics	832	63	946	15,551
Physics	163	22	246	4,877
Geosciences	79	26	135	4,077
Total All Fields	137,566	10,751	124,787	$1,541,704$

National Academy of Sciences National Research Council

"Now, for the first time in our nation's history, we have a call to action, a dramatic call for change, and one that specifically states that all students, at all grade levels, should receive earth science instruction." NCES 1996

Earth Science

Physical Science Life Science
ma COUNCIL of CHIEF STAT COUNCLL OE CHIEF STAI
SCHOOL OFFICERS

Number of Earth Science Teachers 9-12

1990	1998	2006
$\mathbf{1 3 , 4 2 5}$	$\mathbf{1 8 , 2 4 2}$	$\mathbf{1 6 , 2 1 1}$

by comparison	Chemistry	$\mathbf{2 9 , 5 2 2}$
	Biology	$\mathbf{5 9 , 1 6 3}$
	Physics	$\mathbf{2 2 , 0 5 6}$

\# of Physics teachers in $2000=15,583$

Number of Teachers=Assigned to teach course/subject one or more periods. Source: State Indicators of Science and Mathematics Education 2007, Council of Chief State School Officers, Washington, DC, 2007.

State Indicators of Science and Mathematics Education

High School Science

Table 1.3 shows the percentage of high school students in each reporting state that took a first-year course in Chemistry, Physics, Biology, and Earth Science by graduation. State data on science courses show that in most states almost all high school students take Biology, while across the states, enrollment in Earth Science at the high school is extremely varied.

ZUSGS

College and University Faculty in Geoscience

Professor
6168
Assoc. Professor 2707
Asst. Professor
3145
Total
12,020

ZUSGS
"Geoscientists, Berven Farth Science in Texas"

And From California...

"Implementation guidelines failed to live up to standards' treatment of earth science."

Standards, Benchmarks, Science Anchors and literacy documents are only good intentions unless they immediately degenerate into hard work!

Worth rediscovering what was successful in the past, e.g., the Earth Science Curriculum Project

and finally, something to think about ...

