american

ﬁ'
[v geosciences

institute
connecting earth, science, and people

Published on American Geosciences Institute (https://www.americangeosciences.org)
Home > Using the dataRetrieval Stats Service

Using the dataRetrieval Stats Service

USGS Office of Water Information

ow

I ntroduction

This script utilizes the new dataRetrieval package access to the USGS Statistics Web Service. We will be pulling daily mean data
using the daily value service in reeadNWI Sdata, and using the stats service data to put it in the context of the site’s history. Here we
areretrieving data for July 12th in the Upper Midwest, where amajor storm system had recently passed through. Y ou can modify
this script to ook at other areas and dates simply by modifying the states and storm.date objects.

To run this code, we recommend having either dataRetreival version 2.5.13 (currently the latest release on CRAN) or version 2.6.1
(currently the latest Github release).

Get the data

There are two separate dataRetrieval calls here — one to retrieve the daily discharge data, and one to retrieve the historical
discharge statistics. Both calls are inside loops to split them into smaller pieces, to accomodate web service restrictions. The daily
values service allows only single states as afilter, so we loop over the list of states. The stats service does not allow requests of
more than ten sites, so the loop iterates by groups of ten site codes. Retrieving the data can take a few tens of seconds. Once we
have both the daily value and statistics data, the two data frames are joined by site number via dplyr’sleft_join function. We use a
pipe to send the output of the join to na.omit() function. Then we add a column to the final data frame to hold the color value for
each station.

#example stats service map, comparing real-time current discharge to history for each site #reusable for other state(s) #David
Watkins June 2016 library(maps) library(dplyr) library(lubridate) library(dataRetrieval) #pick state(s) and date states <-
c("WI","MN","ND","SD","IA") storm.date <- "2016-07-12" #download each state individually for(st in states){ stDV <-
renameNWI SColumns(readNWI Sdata(service="dv", parameterCd="00060", stateCd = st, startDate = storm.date, endDate =
storm.date)) if(st != stateg[1]){ storm.data <- full_join(storm.data,stDV) sites <- full_join(sites, attr(stDV, "sitelnfo")) } else{
storm.data <- stDV sites <- attr(stDV, "sitelnfo") } } #retrieve stats data, dealing with 10 site limit to stat service requests reqBks
<- seq(1,nrow(sites),by=10) statData <- data.frame() for(i in reqBks) { getSites <- sites$site no[i:(i+9)] currentSites <-

readNWI Sstat(siteNumbers = getSites, parameterCd = "00060", statReportType="daily",
statType=c("pl0","p25","p50","p75","p90","mean")) statData <- rbind(statData,currentSites) } statData.storm <-

statData] statData$month_nu == month(storm.date) & statData$day nu == day(storm.date),] finalJoin <-
left_join(storm.data,statData.storm) finalJoin <- left_join(final Join,sites) final Join[,grep("_va",names(finalJoin))] <-
sapply(finalJoin[,grep("_va',names(final Join))], function(x) as.numeric(x)) #remove sites without current data final Join <-

final Join[!is.na(final Join$Flow),] #classify current discharge values final Joinclass <- NA final Join$cl ass[final Join$Flow >

final Join$p75_va] <- "navy" final Join$class]final Join$Flow < final Joingp25_va] <- "red" final Join$class[final Join$F ow >

final Join$p25_va & finalJoin$Fow <= final Join$p50_va] <- "green" final Join$class]final Join$Flow > final Join$p50_va &

https://www.americangeosciences.org
https://www.americangeosciences.org/
https://www.americangeosciences.org/geotimes/using-dataretrieval-stats-service
https://owi.usgs.gov/blog/
https://owi.usgs.gov/blog/stats-service-map/
http://waterservices.usgs.gov/rest/Statistics-Service.html
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

final Join$Flow <= final Join$p75_va] <- "blue" final Join$clasyis.na(final Join$class) & final Join$Flow > final Join$p50_va] <-
"cyan" final Join$clasy]is.na(final Join$class) & final JoinsFlow < finalJoin$p50_va] <- "yellow" #take alook at the columns that
we will plot later: head(final Join[,c("dec_lon_va',"dec lat_va',"class")]) ## dec_lon vadec lat vaclass## 1-92.09389 46.63333
navy ## 2 -91.59528 46.53778 navy ## 3 -90.96324 46.59439 navy ## 4 -90.59000 46.39472 navy ## 5 -90.69630 46.48661 navy
6 -90.90417 46.49722 navy

Make the static plot

The base map consists of two plots. The first makes the county lines with a gray background, and the second overlays the heavier
state lines. After that we add the points for each stream gage, colored by the column we added to finalJoin. In the finishing details,
greonvertXY isahandy function that converts your inputs from anormalized (0-1) coordinate system to the actual map
coordinates, which alows the legend and scale to stay in the same relative location on different maps.

#eonvert states from postal codes to full names states <- stateCdL ookup(states, outputType = "fullName") par(pty="s")
map(‘county',regions=states,fill=TRUE, col="gray87", Iwd=0.5) map('state',regions=states,fill=FAL SE, Iwd=2, add=TRUE)
points(finalJoinddec_lon_va, final Joingdec_lat_va, col=final Join$class, pch=19) title(paste("Daily discharge value percentile
rank\n",storm.date),line=1) par(mar=c(5.1, 4.1, 4.1, 6), xpd=TRUE) legend.colors <- ¢("cyan","yellow", "red", "green”,"blue",
"navy") legend.names <- ¢("Q > P50*","Q < P50*", "Q < P25", "P25 < Q < P50","P50 < Q < P75", "Q > P75")
legend("bottomleft” ,inset=c(0.01,.01), legend=legend.names, pch=19,cex = 0.75,pt.cex = 1.2, col = legend.colors, ncol = 2)
map.scale(ratio=FAL SE,cex = 0.75, grconvertX(.07,"npc"), grconvertY (.2, "npc")) text("* Other percentiles not available for these
sites’, cex=0.75, x=grconvertX (0.2,"npc"), y=grconvertY (-0.08, "npc"))

Make an interactive plot

Static maps are great for papers and presentations. When possible, interactive maps allow the reader more flexibility to examine
the data. The R leaflet package makes it easy to create useful interactive maps:

library(leaflet) final Join$popup <- with(final Join, paste("",station_nm,"</br>", "Measured Flow:",Flow,"ft3/s</br>",
"25% historical:",p25_va,"ft3/s</br>", "50% historical:",p50_va,"ft3/s</br>", "75% historical:",p75 va,"ft3/s")) leafMapStat <-
|eaflet(data=final Join) %>% addProviderTiles(" CartoDB.Positron") %>% addCircleMarkers(~dec_lon_va,~dec lat va, color =
~class, radius=3, stroke=FAL SE, fillOpacity = 0.8, opacity = 0.8, popup=~popup) leafMapStat <- addL egend(leafM apStat,
position = 'bottomleft’, colors= legend.colors, label s= legend.names, opacity = 0.8)

Disclaimer: The NWIS stats web service that dataRetrieval accesses here isin beta, and its output could change in the future.

Questions

Please direct any questions or comments on dataRetrieval to: https://github.com/USGS-R/dataRetrieval/issues

https://github.com/USGS-R/dataRetrieval/issues

