The occurrence of excess 40Ar in amphibole: implication of 40Ar/39Ar dating by laser stepwise heating and in vacuo crushing

Hu, R.G. 1,2,3*, Wijbrans, J.R. 3, Brouwer, F.M. 3, Qiu, H.N. 1 and Feng, Z.H. 1

1College of Earth Sciences and Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin, Guangxi 541004, China (hurongguo@glut.edu.cn)

2State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;

3Department of Petrology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands;

Amphibole is one of the most common minerals dated by the 40Ar/39Ar method due to its relatively high retentivity for argon and widespread occurrence in metamorphic and igneous rocks [1]. In the Yuka terrane, north Qaidam orogen, NW China, amphibole widely occurs in high/ultrahigh pressure (HP/UHP) metamorphic rocks. There are still only rare 40Ar/39Ar age data available, which have been devoted to amphibole in this terrane thus far. Possible reasons for this include the fact that metamorphic amphibole is easily contaminated by excess 40Ar.

Amphibole from a gneissic amphibolite from the Yuka eclogite–gneiss terrane, North Qaidam, has been analyzed by 40Ar/39Ar laser stepwise heating and in vacuo crushing methods. The release pattern of heating is somewhat saddle-shaped with a total gas age of 574.5 ± 2.5 Ma. This age is significantly older than the reported zircon U-Pb ages (c. 495 Ma) from the Yuka eclogite [2], indicating the presence of excess 40Ar. The apparent K/Ca ratios are concordant with a mean value of 0.12 ± 0.02, which is consistent with EMP analysis results.

In order to decipher the occurrence of excess 40Ar and constrain the age of amphibolite-facies retrogression, a duplicate amphibole sample was employed for 40Ar/39Ar analysis by in vacuo crushing. The crushing experiment exhibits a monotonically declining release spectrum with concordant apparent ages in the later crushing steps, which yields a plateau age of 460.9 ± 0.6 Ma. The data comprising the age plateaux form an excellent isochron with an intercept age of 457.6 ± 0.9 Ma. The crushing K/Ca spectrum shows a hump-shaped feature with a higher mean K/Ca ratio of 0.63 ± 0.05. The distinctly different K/Ca ratios for heating and crushing indicate that the gases released by these two methods are likely to have been derived from different sources.
References:

