Species-specific Fe-isotopes on Palaeoproterozoic BIF and their implications

Oonk, P.B.H.1,2, Tsikos, H.1, Mason, P.R.D.2, Henkel, S.3, Staubwasser, M.4 and Williams, H.M.5

1Geology Department, Rhodes University, Grahamstown, South Africa (PBHOonk@gmail.com)
2Department of Earth Sciences, Universiteit Utrecht, The Netherlands
3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
4Institut für Geologie und Mineralogie, Universität zu Köln, Germany
5Department of Earth Sciences, Durham University, United Kingdom

Banded iron formations (BIF), deposited prior to and concurrent with the Great Oxidation Event (GOE) at ~2.4 Ga, record changes in the oceanic and atmospheric chemistry during this critical time interval. Three previously unstudied drill-cores from the western Transvaal Basin, South Africa, capturing the rhythmically mesobanded Kuruman BIF and the overlying granular Griquatown BIF, were sampled every ~20 m. along core depth. These samples were analysed for mineralogy, geochemistry and bulk Fe and C-isotopes.

Bulk Fe-isotopic values of 50 samples show an apparent relationship with mineralogy. The lower δ56Fe values (< -2.0) correlate with carbonate-rich samples, whereas higher δ56Fe values (>0.0) correspond to samples rich in bulk modal magnetite. To further investigate this relationship, a 3-step sequential extraction protocol was developed to separate the three main Fe-hosting fractions (Fe-carbonates, Fe-oxides and Fe-silicates). Rare Earth Element (REE) patterns were resolved for the individual fractions and using the leachate destruction protocol of Henkel et al. [1] we were able to measure for the first time species specific Fe-isotopes of bulk-BIF samples.

Species specific Fe-isotopes are probably a better proxy for the Palaeoproterozoic ocean than bulk-rock values, since the latter are strongly influenced by the modal mineralogy of each sample. We used bulk-rock C-isotope data combined with the species specific REE and δ56Fe to argue that the Fe-carbonates (and possibly Fe-silicates) in the Transvaal BIFs record primary chemical signatures. It follows that chemical signatures can be preserved, through changes of the textural appearance of minerals in BIF during diagenesis and low-grade metamorphism [2].

Preliminary data indicate that the Fe-oxides (dominated by magnetite) are probably formed by recycling and mixing of precursor Fe-(oxy)hydroxides and ferrous sea- or pore-waters, since their positive δ56Fe values deviate strongly and consistently from the negative ones of the other fractions. The post-GOE Fe-oxides of the stratigraphically higher Hotazel Formation have negative δ56Fe values, which supports a basin-wide Rayleigh fractionation of isotopically heavy-Fe [3].

References: