Water contents on peridotite xenoliths from Southwest China

Wang, R.¹, Li F.², Xie Z.P.³, Yang G.S.⁴, Zhang Z.F.⁵, Zhu M.⁶, Fan A.L.⁷

¹Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China. gemmjewl@gmail.com
²Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China.
³Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China.
⁴Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China.
⁵Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China.
⁶Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China.
⁷Faculty of Land Resource and Engineering, Kunming University of Science and Technology, Kunming, China.

Major and trace element and water contents of clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol) in peridotite xenoliths hosted by the Cenozoic basalts of Bazai in the junction of the Yangtze block, the South China block and the Ailaoshan fold belt were evaluated using electron microprobe, laser-ablation ICP-MS and Micro Fourier transform infrared spectroscopy, respectively. The correlations among the major elements of the minerals define a melting trend. Orthopyroxene is enstatitic with Mg# (Mg / (Mg + Fe)) between 0.89 and 0.91 and Al₂O₃ from 3.4 to 4.7 wt. %. Mg# of all minerals are negative correlation with Al contents and Ti, but positive to Cr. The value of Cr# in the spinel indicates that the degree of partial melting ranges from 2% to 15%. Mantle re-equilibration temperatures around 1000 °C implies that, after melt extraction and before exhumation to the ocean floor, the rocks experienced significant cooling in the spinel peridotite facies. Most samples (23 out of 30) show depleted chondrite-normalized rare earth element patterns and a degree of partial melting < 6%. The H₂O contents (weight in ppm) of cpx, opx and ol are 141- 600 ppm, 95 - 174 ppm and 2 - 7 ppm, respectively. Based on the mineral modes, the calculated whole-rock H₂O contents range from 37 to 115 ppm, similar to that of the MORB source (50 - 250 ppm). When combined with previously reported data for peridotites hosted by Cenozoic basalts at other localities of the South China Block (SCB) and the North China Craton (NCC), the Cenozoic lithospheric mantle of the NCC is dominated by much lower water content compared to the SCB and this junction (average 100 ppm vs. 20 ppm for whole rock H₂O contents), where lithospheric thinning occurred during the Mesozoic. In conclusion, the block junction undergo different lithospheric action or that the mechanism of the lithospheric thinning was different.

Acknowledgement, this research was jointly supported by the National Natural Science Foundation of China (No.41363002), the Doctoral Fund of Ministry of Education of China (20135314120008) and the Yunnan Provincial Science and Technology Bureau Fund (2013FB013), the Projects “Mantle minerals and rocks” of the multi-disciplinary team program of Kunming University of Science and Technology.