Paper Number: 3371

Tectonic evolution of the Gaoua region, Burkina Faso: Implications for Mineralization

Baratoux L.^{1,2}, Metelka, V.³, Naba, S.⁴, Ouiya, P.⁴, Siebenaller, L.^{1,5}, Jessell, M.W.^{1,3}, Naré, A.⁶, Béziat, D.¹, Salvi, S.¹, Franceschi, G.⁶

¹GET, IRD, CNRS, OMP, 14 avenue E. Belin, Toulouse, France, lenka.baratoux@ird.fr
²Institut Fondamental d'Afrique Noire Cheikh Anta Diop Dakar, Senegal
³CET, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009
⁴Université de Ouagadougou, Ouagadougou, Burkina Faso
⁵ONG-D "Le Soleil dans la Main" asbl, 48, Duerfstrooss, L-9696 Winseler, Luxembourg
⁶Volta Resources Inc., Currently B2Gold Corp., Vancouver, Canada

The interpretation of high-resolution airborne geophysical data integrated with field structural and lithological observations were employed in the creation of a litho-structural framework for the Gaoua region, Burkina Faso. The granite-greenstone domain of Paleoproterozoic age was affected by multiple deformation and mineralization events [1]. The early tectonic phase is characterized by the emplacement of voluminous tholeiitic and calc-alkaline lavas, probably in a volcanic arc setting. The copper mineralization in Gongondy, Dienemera and Mt Biri is concentrated in a diorite/andesite breccia, and is interpreted as porphyry-copper style formed at an early stage of the evolution of the area. Evidence for the first deformation event D1Ga corresponding to N-S shortening was only found in the E-W trending mafic unit bordering the Gaoua batholith to the south. A second deformation phase D2_{Ga} occurred under greenschist facies conditions and lead to a development of more or less penetrative metamorphic foliation and its subsequent folding under overall E-W compression. At later stages, the D2_{Ga} switched to a transcurrent regime characterized by intense N-S to NW-trending steeply dipping

shear zones. The first significant gold mineralization event is related to this transcurrent tectonic phase. During subsequent $D3_{Ga}$, intense network of brittle to brittle-ductile NW and NE faults developed. Economic gold concentrations are attributed to the $D3_{Ga}$ event and are associated with the remobilization of early disseminated low grade gold concentrations. Significant deposits in the area are Nassara, Gomblora, Batié West and Kampti. The last deformation event $D4_{Ga}$ resulted in E-W trending thrust faults and crenulation cleavage planes, under overall N-S compression. No mineralization events related to this stage have been seen.

References:

[1] Baratoux et al., (2015) J Afr Earth Sci; doi: 10.1016/j.jafrearsci.2015.10.004 [2] Le Mignot (2014) Les gisements d'or comme temoins de l'histoire geologique du Craton ouest-africain e Apports de la datation. Unpublished PhD thesis. Lorraine University, Nancy, p. 335.
[3] Reisberg et al. (2015) Proceedings of the 13th SGA Biennial Meeting, Nancy, 24-27 August 2015, 4, pp. 1655-1658.

Figure 1: Summary diagram of the deformation and mineralization phases in the Gaoua area. Re-Os ages are from [2] and [3].