Astronomical constraints on the duration of the early Jurassic pliensbachian and toarcian stages and global carbon-cycle and climatic perturbations

Ruhl, M., Hesselbo, S.P., Hinnov, L., Jenkyns, H.C., Xu, W., Storm, M., Riding, J.B., Ullmann, C.V.

The Early Jurassic (201.3 to 174.1 Ma) is bracketed by the end-Triassic mass extinction and global warming event, and the Toarcian–Aalenian shift to (global) icehouse conditions [1, 2, 3, 4]. It is further marked by the early Toarcian Oceanic Anoxic Event (T−OAE), with possibly the largest exogenic carbon-cycle perturbation of the Mesozoic, and related changes in global geochemical cycles, climate and the environment, thought to be linked to emplacement of the Karoo–Ferrar Large Igneous Province [5, 6]. Furthermore, Early Jurassic continental rifting, with the break-up of Pangaea and the opening of the Hispanic Corridor and Viking Strait, likely initiated major changes in (global) ocean circulation and climate, possibly impacting global ecosystems and biogeochemical cycling. The time-scale and timing of these events is, however, rather poorly constrained.

Here, we present high-resolution elemental concentration data from the Mochras Borehole (Wales, UK), which represents ~1300m of possibly the most complete and expanded Lower Jurassic hemi-pelagic marine sedimentary archive known. We construct a floating ~14 Myr astronomical time-scale spanning the complete Early Jurassic Pliensbachian and Toarcian stages and biozones. Combined with radiometric and astrochronological constraints on Early Jurassic stage boundaries, we construct a new, absolute, time-scale for this interval. We further assess the duration of the Pliensbachian (~8.7 myr) and Toarcian (~5.3 myr) stages and the duration and rate of change of Sinemurian–Pliensbachian, Pliensbachian–Toarcian and Early Toarcian global carbon-cycle and climatic perturbations. With this, we directly compare Early Jurassic (specifically Early Toarcian) environmental and global carbon-cycle change to absolute time-constraints on Large Igneous Province (Karoo and Ferrar) volcanism. We furthermore discuss the nature and expression of Early Jurassic long (> 405 kyr) astronomical cycles.

References:


