

Displacement Mapping

Derrold W. Holcomb April 2020

PS-InSAR Displacement Mapping Part I Overview

Persistent Scatterer Interferometric Synthetic Aperture Radar

Permanent Scatterers
Distributed Scatterers
Time-Series DInSAR
SBAS (Small Baseline Analysis)
etc

PS-InSAR Technology

- To average-out system noise, estimate DEM errors and suppress atmospheric effects requires 20-40 appropriate images.
- To select proper images, optimize software parameters and tune the processing regimen requires an expert Analyst.
- Previously, planning such a project, performing analysis and preparing a report typically cost \$50,000 to \$150,000 per project.
- Software alone is NOT a feasible solution to persons and facilities who need radar data-derived Information and have no desire to develop inhouse expertise in Advanced T-S DInSAR analysis.

PS-InSAR Technology in IMAGINE

- A very easy, cost-effective way for anyone is to use the existing IMAGINE DInSAR Wizard Workflow to monitor regions of interest for "hotspots".
- Once located, an IMAGINE "DInSAR as a Service" User Interface can be used to delineate the hotspot AOI and submit a request for an in-depth analysis service.
- A cost estimate based on size of area and type of Service will be developed by Hexagon and Planetek.
- When Service is completed, Product Information is delivered via the Hexagon M.App Chest.
- Product Information can then be evaluated and exploited within IMAGINE with appropriate Tools.

PS-InSAR has 2 **IMAGINE** access points; Radar Utilities and Radar Interferometry

Service Request GUI is fully integrated into IMAGINE Viewer

Service Request GUI is fully integrated into IMAGINE Viewer

Applications

- > Hydrocarbon Extraction
- ➤ Mining
- Water Aquifer Monitoring
- City Services Infrastructure
- High-Speed Rail
- Motorways Monitoring
- > Critical Infrastructure (e.g. Dams, Power Plants)
- Tunneling
- Earthquake Prediction
- Landslide Prediction

Hydrocarbon Extraction

- Subsidence is not a simple circular phenomena
- A sparse array of point-wise detectors has no chance of capturing the actual displacement fields
- A uniform integrated area coverage is required to "get the picture"

Hydrocarbon Extraction

- Unremediated displacement results in damage
- Damage to infrastructure and the environment, injury to personnel, lost production
- \$\$\$\$\$\$

Mining

WHAT?

 Monitoring subsidence induced by the mining and extraction of fluids from the subsoil

WHO?

- Mining operators
- Public administration authorizing mining activities

WHY?

 Monitor the stability of urban areas and infrastructures above the mining areas

WHEN?

Monthly update

Mining

Subsidence Induced by Mining Activities

Measured Mean Speed Over the Monitoring Period

City Services Infrastructure

Critical Infrastructure

PS-InSAR Subsidence Mapping Part II Aquifer Monitoring

x^R ^

F

Got it!

W

Im

Im

-

e

Ω

× +

R Rheticus ® Displacement

← → C 🏻 displacement.rheticus.eu/#/

Rheticus Displacement hexagongeospatial (Hexagon Geospatial) 🛛 🤮 Q 큞 Account 34.15812,-113.02185 + hexagongeospatial (Hexagon Geospatial) Ο 34.06432,-113.09395 A ME SAME (mm/year) 0 5 km 8:56 AM 3/25/2020

Got it!

x^R ∧ ^{8:59 AM} 3/25/2020 ₹

hexagon.com

ent Maps (mm)

Displaceme

Displacement

Scatterer Code	Product	Orbit	Coherence (%)	Normalized Coherence (%)	Altitude (m)	Velocity * (mm/year)	Acceleration * (mm/year ²)
L06125P06141	PS	D	75	50	594.4	-21	20.5

* Period of interest: Global

Powered by Dark Sky

.

33.81335,-113.50842

ent Maps (mm)

Displacerr

Displacement

Scallerer Code	Product	Ofbit	(%)	(%)	(m)	(mm/year)	(mm/year ²)
• L06125P06141	PS	D	75	50	594.4	-21	20.5

* Period of interest: Global

Powered by Dark Sky

.

33.86332,-113.43255

		(1.0)	1.997	And a	(mins) our)	(initia your)
PS	D	75	50	594.4	-21	20.5

* Period of interest: Global

Powered by Dark Sky

33.86539,-113.42345

* Period of interest: Global

Powered by Dark Sky

33.85349,-113.47014

Displacement

, Arizona, United States of America [LAT: 33.835; LON: -113.4677]

No Rainfall More info Rainfall V

33.83638,-113.50533

Scatterer Code	Product	Orbit	Coherence (%)	Normalized Coherence (%)	Altitude (m)	Velocity * (mm/year)	Acceleration * (mm/year ²)
• L06162P05530	PS	D	84	68	614.1	-13	19.5
L06161P05537	PS	D	78	56	613.2	-14	18.6
• L06162P05529	PS	D	77	54	615.8	-13	23.4

* Period of interest: Global

Powered by Dark Sky

Displacement

2. 1. 6. 15

No Rainfall More info Rainfall V

Scatterer Code	Product	Orbit	Coherence (%)	Normalized Coherence (%)	Altitude (m)	Velocity * (mm/year)	Acceleration * (mm/year ²)
L06162P05530	PS	D	84	68	614.1	-13	19.5
• L06162P05529	PS	D	77	54	615.8	-13	23.4

* Period of interest: Global

Powered by Dark Sky

33.83273,-113.47851

-15 0 +15 1 1 1 1 (mm/year)

33.83486,-113.46763

÷

Thank You

