VISION AND CHANGE: CRITICAL SKILLS and COMPETENCIES UNDERGRADUATE and GRADUATE

Summit Convening Team

(Sharon Mosher, Wendy Harrison, Jacqueline Huntoon, Chris Keane, Dave McConnell, Kate Miller, Jeff Ryan, Lori Summa, Joshua Villalobos, Lisa White)

Sponsored by

- Summit on the Future of Undergraduate Geoscience Education (2014 -)
- Improving Geoscience Graduate Student Preparedness for the Future Workforce (2017-)

NSF-supported efforts to seek community consensus on what undergraduate and graduate programs in the geosciences should do for students to prepare them for success as professionals in a rapidly changing discipline, and world.

Vision and Change in the Geosciences:

Outlines the consensus view of >1000 geoscience professionals in academia and the private and public sectors.

Key Consensus Findings:

- Geoscience curricula should be built around critical skills and competencies
 - Both conceptual and practical competencies
 - A specific corpus of courses is NOT essential
- Undergraduate AND graduate geoscience students both need learning and practice in key professional skills

Academic/Employer Consensus: Conceptual Competencies

Systems Thinking

 (lithosphere/atmosphere/hydrosphere/biosphere and their interactions; Earth in the Solar System)

Processes

- Geochemical (Thermodynamics, crystallization/melting, water-rock exchanges, global chemical cycles)
- Time (deep time, Earth Evolution)
- Geomechanics (structure, tectonic processes, geodynamics
- Earth Surface processes (deposition, erosion, landforms)

Graduate Level Conceptual Competencies:

- MS, Ph.D. Graduates both need expertise and depth in their core areas
 - Mastery of core technical/scientific skills in their area(s) of expertise are absolutely necessary
 - They need a deep understanding of the fundamentals, techniques and methods used in their work
 - Per employers: Graduates generally are coming out with strong technical and academic skills
 - Deep knowledge in their geoscience field
 - Good research skills and field skills

Academic/Employer Consensus: Important Skills/Tools

- Statistics and Probability
- "Higher" Math: Linear Algebra, Differential Equations
 - Modeling (numerical/analytical)
- Geospatial skills (Mapping, GIS)
 - Field skills
- Geochemical tools (instrumental analysis, age dating)
- Geophysical tools (gravity/magnetics/seismic/ geodesy, etc.)

Technical Skills: Data Management & Data Analytics

- NEW not clearly called out during 2014 Summit events
 - Reflective of the dramatic growth in "big data" applications in earth/ocean/atmospheric fields
 - Data Acquisition Management, Analysis, Integration, Assimilation
 - Visualization and modeling; AI, VR, robotics, Machine Learning, etc.
 - Valuation (monetization) of data

Related Computational Skills

- Coding and basic Programming
 - Esp. updating old software to new/better programming languages
- Analyzing algorithms (re: machine learning, AI)
- Conversant w/ cloud computing vs. supercomputing (re: big data storage/analysis)
 - Statistics for characterizing uncertainty
 - Comfort with higher math (Calculus, Diff. Equations, Linear Algebra) a given

Professional Skills and Competencies - Graduate AND Undergraduate

- Problem solving & critical thinking
 - Defining problems, devising appropriate & sufficient solutions
 - Articulating the primary and broader outcomes of their work, especially from professional/business perspectives
 - Employers: Many graduates struggled defining problems, but address them well once they're defined.
- Teamwork, Collaboration, Leadership
 - Working in diverse teams of trained individuals towards common goals
 - Ability to get others to work together; dealing with conflict
 - Being coachable; taking directions; leading AND following
 - Geoscience graduates generally have limited experience in professional collaborations and teamwork
- Broad-based Communication Skills
 - Effectively conveying technical findings to diverse audiences (Specialists, other STEM professionals, management, pubic, press)
 - » Effectively communicating societal and/or financial impacts as well as the science
 - Listening as well as speaking/writing
 - Graduates struggle with communication to diverse audiences...

Other Professional Skills/Competencies that are lacking:

Project & Program Management

- Understanding budgets, project financials, Manage time, people & resources; teambuilding

Business Skills

- Economic, data-driven decision-making; risk, uncertainty
- Innovation & entrepreneurship

Ethics & Professionalism

- Integrity and its importance to science & research process
- Understanding plagiarism, self-plagiarism, rules for scientific citation and research

Career Awareness

- Networking how to do, what not to do, where to go/be
- Where to search, resumes, applications, interviews,
- Knowledge of careers and one's career options

Virtual presence/brand

- Current presence on social media and how that effects hiring/career
- Representing that extra expertise

Corporate skills

- Being able to make it relevant to the CEO or Manager
- Ability to move up & transition within organization (1st job is not the last)

LinkedIn

How do we include all this? Heads/Chairs ideas:

Courses/Curricula

- Mapping competencies across the graduate curriculum (matrix model: Mogk 2013)
- Building teamwork/business-related acitvities into courses (AAPG Imperial Barrel, etc.)
- Elective/special topics courses in big data, coding, statistics, science communication, project management
- Reevaluate the qualifying/comprehensive exam within the context of broader professional expectations- e.g.
 include a written press release, a 3 minute thesis presentation, a project plan, timeline, and budget

Portfolios and Individual Development Plans: (making these a central part of undergraduate/graduate advising)

- Customized roadmap for professional training & goals
 - Skills assessment: What skills do I currently have?
 - Career Aspirations what career pathways interest me? What do I like to do?
 - Desired Skills setting goals for the skills I want
 - Professional Development what support can I take advantage of?
 - Reflect on self-assessments & career aspirations / professional values
 - See AAAS Science Careers: my IDP (https://myidp.sciencecareers.org/)

How do we include all this? Heads/Chairs ideas:

Research: students can develop many key technical and professional skills

- Focused disciplinary & technical knowledge
 - Field and/or lab skills
 - Computational skills and field-specific "Big data" Analytics/Management
- Written & Oral communication
 - Thesis/dissertation, publications, proposals & conference presentation
 - Presentations to research group, department, undergraduate classes
 - Writing press releases before the full proposal & publication -- societal impact, diverse audiences
- Critical Thinking & Problem solving
 - Critical reading/evaluation of journal literature
 - Identifying reliable data sources
 - Analyzing & evaluating results, communicating uncertainty
 - Learning to formulate problems & solutions; recognizing societally important problems
- Ethical (research) behavior & standards of practice
- Teamwork (as part of research groups)*
 - Project & time management
 - Conflict Resolution, Diversity and cultural sensitivity
 - (*harder to model private/public sector practices; IODP and like marine research efforts; NSF Traineeship projects, etc.)

How do we include all this? Heads/Chairs ideas:

Co-Curricular activities should be used to support learning key professional skills

- Departmental activities:
 - Clubs, internships, organized outreach efforts, professional organizations, etc.
 - Leadership & management skills, oral and written communication
 - Interpersonal skills
 - Teamwork with diverse groups
 - Informal faculty/staff/peer mentoring
 - Entrepreneurship
- Professional Short Courses, Workshops, etc.
 - Through Geoscience Professional organizations
 - AGU, GSA, NAGT, others
 - Via Alumni organizations, returning interns & other "real world" presenters
 - Case studies involve industry partners; industry retirees
 - Teacher training workshops (NAGT-EER, GSA K-16 short courses)
 - Others (Industry-based research/field/other training activities, etc.)

Thanks for your attention!

Questions?