GSA Town Hall Meeting Towards a Global Geoscience Initiative

Critical Research Challenges in Natural Resource Geosciences for the Early 21st Century

Murray W. Hitzman Charles Fogarty Professor of Economic Geology Colorado School of Mines

20 October 2009

Acknowledgements

 A number of individuals were contacted concerning the issue of grand challenges in natural resources geosciences – thanks to all! But especially —

- Mark Barton
- Maeve Boland
- Larry Cathles
- Stephen Kesler
- Donald Paul
- Jeremy Richards
- Steve Sonnenberg
- Scott Tinker
- Neil Williams

Framing the Issue

What is the overarching challenge facing humanity in the early 21st century?

Sustainable existence on planet Earth (+ increased living standards for much of the world's population)

The Real Driver for the Challenge — Population Growth (human system)

2005		2030 estimates	
China	1.31	India	1.53
India	1.09	- China	1.46
USA	0.29	• USA	0.36
Indonesia0.23		Indonesia 0.28	
Brazil	0.22	Pakistan	0.23
Source: U.S. Census Bureau			

Some strategic issues:

(intersections between human and earth systems)

- Growth of mega-cities and need for energy
- Restructuring of global capital and debt
- Renewable energy growth and land use
- U.S., China, coal, and carbon
- Coupling of IT and natural resources growth
- Unanticipated discoveries / technologies
- Unanticipated consequences

Framing the Issue — Natural Resources

How do the natural resources geosciences relate to the global challenge?

Energy

Water

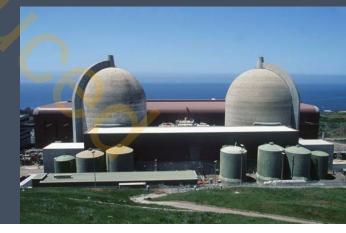
Earth Materials

Through the twin prisms of environmental sustainability and climate change

Natural Resource Issues Involve Complexity:

Science and Technology + Economics and Business + Society and Environment + Policy and Government

Natural Resources -Energy



 Fossil fuels (coal, petroleum, natural gas, unconventional fossil)

Nuclear

Renewables (hydro, solar, wind)

Natural Resources -Energy

- Production
 - Finding more

Producing and using what we have most efficiently

Environment – wastes

- Solids
- Gases
- Liquids
- Heat (lost energy)

Natural Resources -Water

Quantity and quality

Natural Resources – Earth Materials

Production

- Finding more
- Using what we have most efficiently
- Environmental impacts
 - Wastes
 - Land use
 - Energy

Geosciences (Forensics) [earth system]

- Geoscientists have generally focused on forensic science
 - Examine the scene of the crime
 - Do an autopsy

Like medical practitioners who have traditionally diagnosed problems after they happen.

Predictive Geosciences [earth + human systems]

Like medicine, we must move toward predictive and integrative geology.

But see how challenging it can be – current health care debate!

Framing the Issue — Natural Resources

What unique skills do geoscientists bring to the table?

UNDERSTANDING THE EARTH SYSTEM & SCALE & TIME

But we have less expertise integrating earth and human systems

Natural Resource Implications - SCALE Trillion is the magic number*

- Trillion gallons of fuel consumed per year
- Half a trillion gallons of water withdrawn per day in US
- Trillion watts of U.S. power generation capacity
- Trillion barrels of oil consumed in the last 125 years
- Two trillion pounds of sand & gravel consumed in US / year
- Three trillion pounds of copper consumed in the last decade
- Trillion tons of coal reserves
- More than \$20 trillion in capital needed in 25 years for energy Even for geoscientists, the scale of earth-human system issues is enormous!

* Modified from Donald Paul, William Keck Chair of Energy, USC

Natural Resource Implications - SCALE "1% matters" — examples in energy

- Adding 1% to global oil reserves requires about \$200 billion in exploration and production investment.
- U.S. ethanol production is about 1% of total global liquids production.
- Installing 10 GW of solar PV in the US would add 1% to total electric capacity.
- 2.5 million electric vehicles would displace 1% of US fuel demand (100,000 bbl/day).

Natural Resource Implications - SCALE

Enhanced Geothermal (EGS)

 How to manipulate and control both subsurface heat and seismicity (crustal scale)

Fluid / gas movement

 How to understand and manipulate materials at the *nano-scale* in geological environments.

Natural Resource Implications – TIME hundreds to millions of years

- Most individuals think seriously in terms of one to three generations (~150 years).
- Natural resource issues (earth + human systems) must be considered in 100's to 1000's of years.
 - Peak oil
 - Peak coal
 - Nuclear waste disposal
 - Aquifer recharge

Geoscientists must routinely think in millions of years.

Natural Resource Implications – TIME

Energy — natural gas, coal to liquids, oil shale, algal biofuels

- Fracturing pump from the source rock
- In-situ creation of new liquids and gases
- Genetic modification of algal materials and processes

Speed up geologic time!

Natural Resource Implications - TIME

Earth materials

- In-situ leaching (chemical, biological)
- Co-produce metals from geothermal
- Tap active sea-floor hydrothermal vents

Hasten geochemical processes

Natural Resource Implications - TIME

- Environment carbon capture and sequestration (CCS)
 - Utilize and create subsurface reservoirs
 - Innovative ways to tie up CO₂

Create or manipulate subsurface permeability and reaction processes at geologically meaningful scales

Complexity, scale, and time: Natural Resources

Past, present, and future always co-exist.

> Energy Water Environment

Earth System Resources Knowledge

Human System *Technology Values*

+-

Sustainable Existence

Natural Resources: Research Challenges — Overarching Themes

 How to better understand and engineer fluids (of all types) in the subsurface

- Energy (oil and gas; hydrothermal fluids)
- Water
- Environmental (CO₂)

Predictive Geo-engineering

Natural Resources: Research Challenges — Predictive Geoengineering

At all scales and through time.

 Utilize natural test sites (e.g. Earthscope) and human manipulated test sites (oil fields, major aquifers – Ogallala, etc.)

- Field geology (traditional mapping)
- Laboratory (empirical analysis)
- Remote sensing (geophysics)

Synthesis and predictive studies and tests

Global Geoscience Initiative - Natural Resources: Integrating the Earth and Human Systems

- Undertake the necessary predictive geoscience research – e.g. subsurface engineering
- Understand the societal context of this science
- Science + Social Sciences + Humanities
- Genuine dialog with those outside our discipline
- Engage with the public and public policy making *New Global Initiative: Undertake required science Communicate findings (scale, time, complexity) Understand other perspectives*