

The role of anatexis in generating high-grade flake graphite deposits: An example from Graphite Creek, Alaska

GEORGE CASE¹, SEAN REGAN², SUSAN KARL¹, CRAIG JOHNSON³, PAUL O'SULLIVAN⁴, AND JEFF MARSH⁵

¹USGS ALASKA SCIENCE CENTER

²GEOPHYSICAL INSTITUTE, UNIVERSITY OF ALASKA FAIRBANKS

³USGS GEOLOGY, GEOPHYSICS AND GEOCHEMISTRY SCIENCE CENTER

⁴GEOSEP SERVICES

⁵HARQUAIL SCHOOL OF EARTH SCIENCES, LAURENTIAN UNIVERSITY

U.S. Department of the Interior U.S. Geological Survey

FLAKE GRAPHITE – A CRITICAL MINERAL

- Anode material in Li-ion batteries needed for EVs, energy storage systems, portable electronics
- U.S. remains 100% net import reliant
 - Significant consumer
 - Global production dominated by China (MCS, 2021)
- Canada and Australia potential producers?

GRAPHITE MINERAL SYSTEM MODELS

- Amorphous: contact metamorphism
- Lump & chip: hydrothermal fluids
 - Large flakes, high grades, small tonnage
 - Metamorphic or even mantle-derived carbon / fluids
- Flake: regional high-T metamorphism ± fluids?
 - Graphitization of carbonaceous metaseds
 - Devolatization of marble
 - Medium-large flakes, low grades, high tonnage
 - Other processes?? •

≈USGS

Refs: Simandl et al., 2015; Luque et al., 2014

Arrows

GRAPHITE CREEK, ALASKA

GRAPHITE CREEK, ALASKA

• Resource (King et al. 2019)

≥USGS

- 10.95 Mt @ 7.8% Cg (measured + indicated)
- 91.89 Mt @ 8% Cg (inferred)

REGIONAL GEOLOGY

- Kigluaik Mountains gneiss dome
- Neoproterozoic Mesozoic?
 metasedimentary rocks of the
 Kigluaik Group (Nome Complex?)
- Magmatism & granulite-grade metamorphism around 100 – 90 Ma

OREBODY

Massive graphite lenses in outcrop: up to 1m thick, several meters across; pinch and swell

RESTITIC TEXTURES

Massive graphite ± sillimanite, K-spar, quartz, biotite

MONAZITE PETROCHRONOLOGY

- WDS & laser ablation split-stream (LASS)
- Monazite characterized by yttrium depletion of old (~95 Ma) cores
- Retrograde event ~85 Ma

≈USGS

- REE profiles consistent with biotite dehydration melting
 - Biotite + plagioclase + sillimanite + quartz
 = garnet + K-feldspar + melt

DETRITAL ZIRCON GEOCHRONOLOGY

- Unusually young Mesozoic maximum depositional ages
- Strong 90-100 Ma population anatectic zircons
- Neither are recognized elsewhere in the Nome Complex or Kigluaik Group

STABLE ISOTOPES

- Values of -20 to -15‰ consistent with organic source
- Sedimentary sulfur: -5 to +5‰
- Consistent between rock types
- Carbon derived locally from protolith

MINERALIZATION MODEL

- Protolith: carbonaceous shale w/ high TOC
- High-temperature metamorphism
- Anatexis / partial melting & melt+fluid loss
- Graphite left behind as restitic phase, silicate phases lost = concentration

MAPPABLE CRITERIA

- Carbonaceous sedimentary protoliths
 - Anoxic depositional setting
- Evidence of high-T metamorphism
 - sillimanite + K-feldspar assemblage
- Evidence of partial melting
 - Migmatite; khondalite
 - Anatectic zircons
 - Shear zones: melt loss?

MAPPABLE CRITERIA

- Brooks Range, though not known to have granulites, has correlative rocks
- Gneiss domes in Chukotka

THANK YOU!

0

