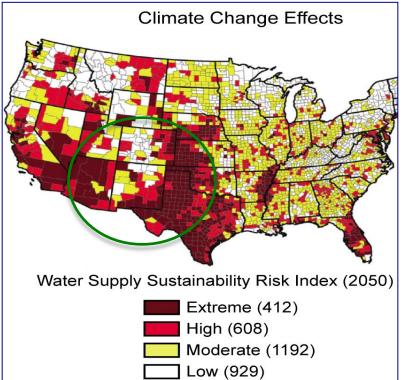
Making Produced Water More Productive

Alternative Uses and Reuse of Produced Water

American Geosciences Institute Webinar December 11, 2015

Dr. Jeri Sullivan Graham Los Alamos National Laboratory <u>Jeri.sullivangraham@state.nm.us</u> <u>ejs@lanl.gov</u> 505-695-4875



Energy, Minerals and Natural Resources Department

Unclassified 'LA-UR-15-29345'

Southwest & Southern Rocky Mountain Region

- The region is delicately balanced in terms of water supplies and demands
- Impacts of climate change and energy production are acute
- Important water-energy challenges:
 - Climate impacts
 - Disruptive events: fire, floods, infrastructure failure
 - Fully allocated water rights
 - Growing/shifting population
 - Rapid and extensive energy development
 - Uncertainties in water for power production

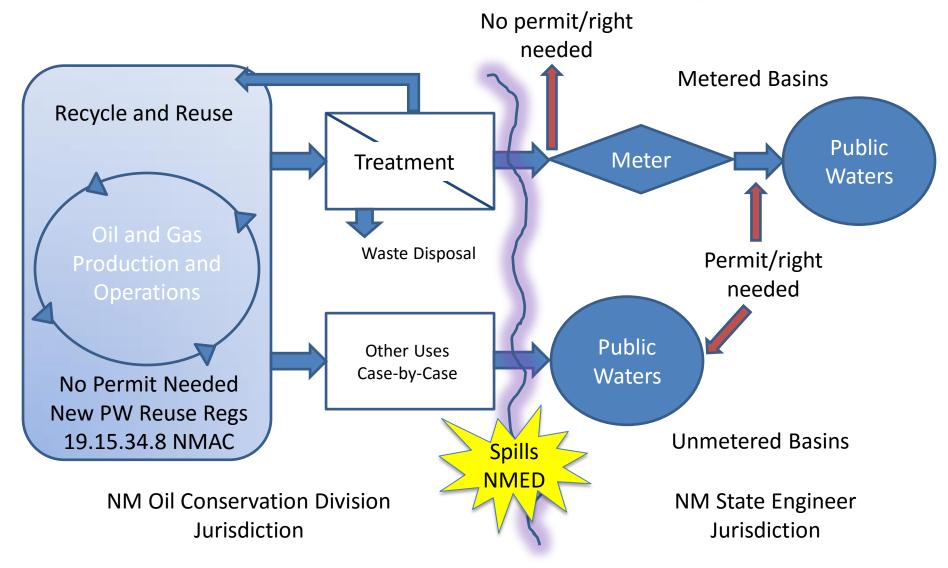
Key Aspects to Implementing PW Use

- Availability-right place, right time, right volume
- Treatment-Metals, TSS, scale-forming minerals, biologics, organic compounds

• Liability, Risk Perception and Use Acceptance

- Who owns the water? Who owns the minerals? What if something undesirable happens?
- Industrial Uses-e.g., mining, oil and gas production
- Other Human Uses-irrigation, industry, drinking
- Biofuel production and coproducts (animal feed, pharmaceuticals)

Safe Use and the Environment

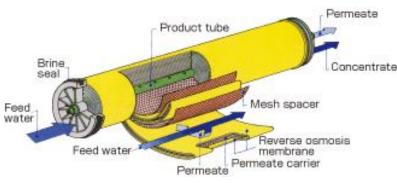

- Handling salty water and waste from treatment (concentrate)
- Operations-spills, corrosion in wells and pipelines, storage
- Non-impingement on fresh water resources
- Long-term sustainability of the resource-planned obsolescence?
- Hydrologic Studies and regional/basin data
- Policies-water rights or rights of capture, inter-basin transfers
- Regulations promoting or inhibiting use (RCRA, state, EPA, etc.)
- Market Analysis
 - Which customer will buy the water? At what price? ...and Scarcity perceptions
- Infrastructure Investment
- Costs
 - Access (pumping from subsurface)
 - Transport
 - Treatment and waste disposal (solids, liquid concentrate)
- Financing-Public or Private?
- Partnerships with Industry and Localities

Build-Own-Operate-Transfer (BOOT), Design-Build-Finance-Transfer (DBFT) and other structures

New Mexico Produced Water Regulatory Framework for Reuse-*a fuzzy dividing line.....*

Alternative uses for Produced Water

- Reuse in oil and gas production
 - Hydraulic fracturing
 - Steamflooding (California)
- Irrigation (after treatment or dilution)
 - Rangeland rehabilitation
 - Non-food (cotton) crops
- Algal biofuel production
- Potash mining (proposed)



Reuse Criteria for HF

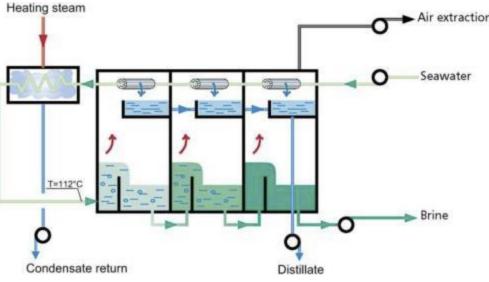
- Critical treatments for reuse in hydraulic fracturing
 - Solids/TSS
 - Free and colloidal oil
 - Microbes
 - Iron and floc formers
 - Ion balance (divalents; mineral scale inhibition)
 - Boron (cross link disruption)
- Less critical: pH, salinity. Salinity can be as high as ~200,000 mg/L TDS

Many treatment options

- Membrane methods
 - Reverse Osmosis
 - Nanofiltration
 - Common in US
 - Usually for seawater

We can recover about 50% of the input water; the rest is concentrated waste that must be disposed at a cost!

More Options


- Thermal methods
 - Multistage Flash Distillation
 - Multiple Effect Distillation
 - Solar Thermal
 - Most Common in the Mideast (in combo with power gen)
 - Now being used for produced water

nbo with

Solar Distillation Parabolic trough with heat transfer fluid (Solar FX-image from New York Times)

A solar receiver in a field in Firebaugh, Zalif, Li is part of a oroject developed by Water TX to cleanse water at a lower cost han traditional dessilinzation. Peter DaSilva for The New fork Times

More Options

- Hybrid Membrane/Thermal methods
 - Membrane Distillation
 - Low-Temperature Distillation (LTDis)
- Electrocoagulation, Capacitive Deionization
 - Uses for specific constituents, lower salinities

	SWRO	SWRO	LTDis				
Year	2015	2030 (projection)	2015				
Cost of water \$/m ³	0.4-0.7	0.3-0.4	0.25-0.35				
Construction \$/m ³	1,000-1,700	500-1,000	500-700				
Power use (kWh/m ³)	2.1-2.6	1.3-1.7	0.8-1.3				
Recovery ratio (%)	50-55	55-65	80				
Plant uptime (%)	70-80		>95				
Source: D&WR, February March 2015 p.23							

Oil and Gas producers are reducing fresh water consumption

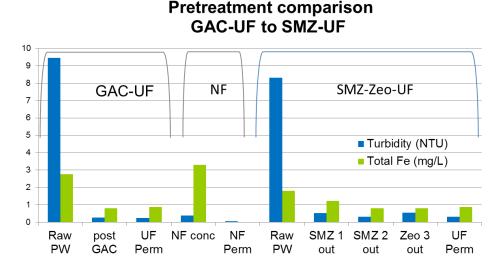
• Treatment goal: 100% PW reuse; retain cross-link gel efficiency

	FW Job	PW w/ EC	PW w/o Treatment
Water Cost	\$250,000	\$0	\$0
Water Treatment	\$0	\$65,000	\$22,500
Water Transport	\$75,000	\$285,000	\$285,000
Pumping Cost	\$1,300,000	\$1,500,000	\$1,500,000
Total Cost	\$1,625,000	\$1,850,000	\$1,807,500

Information courtesy of Kent Adams, VP, Bopco LP

PW Treatment for Steam Generation and Aquifer Recharge

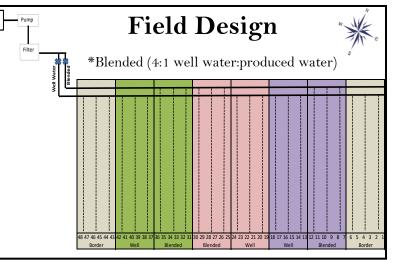
- California's San Ardo field
- Treatment to assure discharge water quality standards and Once Through Steam Generator quality requirements
- Goals: reduce Total Dissolved Solids and Boron while maintaining 75% recovery.
- Methods: oil removal/sorption, softening, filtration, and Reverse Osmosis.
- Results: Reuse of water in oilfield and recharge to groundwater via basins. 50,000 bbls per day of treated water for discharge.
- http://www.veoliawaterstna.com/news-resources/casestudies/opus_technology_aquifer.htm


Produced Water Treatment for use in Rangeland Rehabilitation, Bloomfield NM

- Coal bed methane produced water was treated with multiple steps for organic, coal fine, and salt removal
- Water was discharged to comparative rangeland plots to evaluate most appropriate quality for vegetation rehabilitation
- Collaborative effort between Conoco Phillips, small businesses, LANL, SNL, Bureau of Land Management, and State of NM

Coal fines accumulating in the modified zeolite filtration medium.

Cotton Production Using Produced Water Produced Water

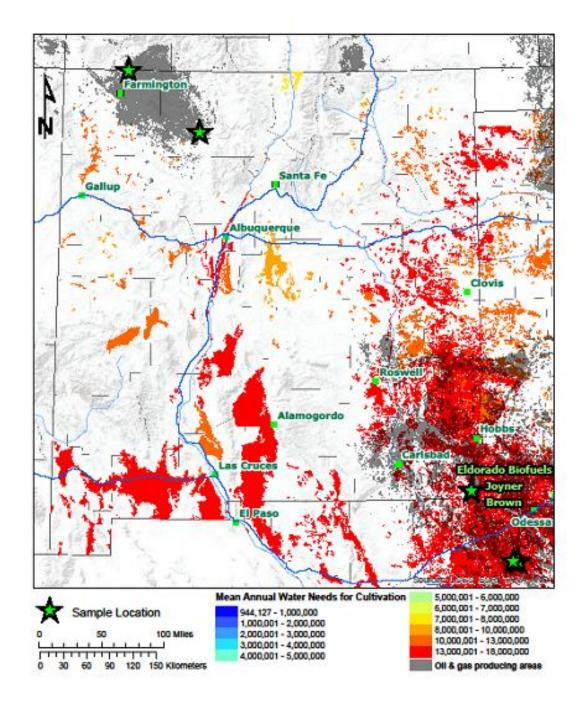


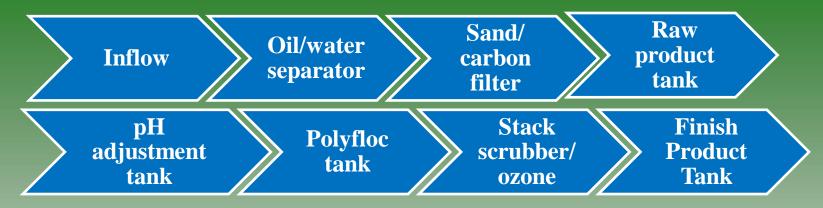
Pecos Soil Characteristics Hoban silty clay loam (17% CaCO₃ and 31% gypsum)

Prior to Study Initiation									
рН	EC	NO ₃ -N	Р	к	Ca	Mg	S	Na	SAR
	dS/m				mg/kg				
8.7	1.8	22.1	30.0	450	17634	516	482	1373	16.7

Soil samples collected 7 Sept 2015													
Irrigation	Depth	pН	EC	NO ₃ -N	Р	К	Ca	Mg	S	Na	В	CI	SAR
Source	cm		dS/m				n	ng/kg					
	0-15	9.0	1.5	9	35	531	14915	575	654	1230	1.6	1018	13.8
Blended	15-30	9.1	1.2	12	26	474	16896	513	476	1347	1.2	896	17.6
	30-60	8.8	1.7	19	19	425	24243	485	528	1349	1.2	1256	15.3
	0-15	8.9	2.2	36	35	528	15054	596	835	1751	1.6	1637	17.5
Well	15-30	9.0	2.1	18	26	471	16352	514	503	1496	1.1	979	17.3
	30-60	8.8	1.8	26	16	409	25706	485	504	1487	1.2	1609	16.9

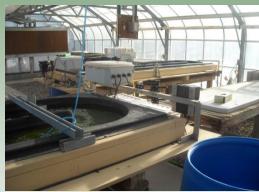
Katie Lewis, Dustin Kelley, and Jaroy Moore Texas A&M AgriLife Research




Variety: DP 1359 Planted: 2 June 2015

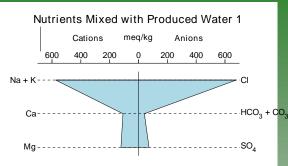
Irrigation	Lint Yield					
Source	(kg/ha)					
Well	658					
Blended	637					
P-value	0.834					

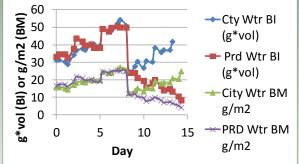
Produced Water Treatment Process, Jal, NM



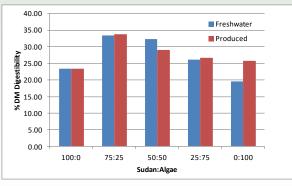
- Sampling event on October 4, 2011 at the Jal, NM Facility.
- Sampling points include raw inflow water from an oil well, post oil/water separation, post sand/carbon filtration, post flocculation and post ozone treatment.

Growing algae in Produced Water




Lab Scale-LANL

N. Salina 1776; Scenedesmus+Tetracystis Salinity 10,000-30,000 mg/L Testing various salinity ranges (10,000-30,000 mg/L); Cu:Zn ratios; HCO₃⁻ concentrations (200-1,000 mg/L) Modeling used to optimize media recipes


Pilot Scale-Texas Agrilife Pecos

N. Salina 1776; salinity 19,000-28,000 mg/L OD=0.6-0.8; AFDW=0.35 g/L; BI=8-50 g/L Exhibited low tolerance to higher salinity range

Field Scale-Eldorado Biofuels

Scenedesmus+Tetracystis (Jalgae™); Salinity 11,000-13,000 mg/L Growing consistently in treated PW Low concentration commercial fertilizer sources of N, P, K HCO₃⁻ concentrations ~700-900 mg/L Diluent fresh water from local stock well Quality is similar to FW samples

Contact for more information-

Jeri Sullivan Graham, Ph.D Los Alamos National Laboratory <u>ejs@lanl.gov</u>; 505-695-4875 c New Mexico Energy, Minerals and Natural Resources Department <u>Jeri.sullivangraham@state.nm.us</u>

photo courtesy of Chip MacLaughlin (chip.maclaughlin@laredopetro.com) accessed 07/25/2014.

Katie L. Lewis Texas A&M AgriLife Research – Lubbock katie.lewis@ag.tamu.edu 361-815-3836

TEXAS A&M GRILIFE RESEARCH

nadarka